excepting even the Camelida. It is only during the earlier period of intra-uterine life that the corpuscle of mammals has a nucleus corresponding to the permanent one in the corpuscle of lower animals. In birds, the nucleus, when exposed by a weak acid, is commonly longer in proportion to its breadth than the envelope; but there are some exceptions, and the nucleus becomes globular or nearly so when in contact with water. In the blood-corpuscle of mammals the central spot, so often mistaken for a nucleus, is not visible in the best focus and light; then if the object-glass be so slightly removed from the corpuscles as not to destroy their clear contour, a dark spot appears in their centre; if the glass be next so far moved towards the corpuscles as to place them slightly within the focus, the dark spot will become bright; and when altogether invisible in a bright light, the spot may be instantly brought into view simply by diminishing the light.

Note.-The following measurements are all in vulgar fractions of an English inch ; but for the sake of convenience, the numerator is omitted throughout, as it is invariably l, and the denominators only are printed. The measurements of the blood-discs are given as they lie flat, unless when a T indicates a measurement of their thickness. By L.D. the long diameter and by S.D. the short diameter is denoted. The measurements refer exclusively to average sizes. The nuclei were measured after exposing them by the action of dilute acetic acid on the envelopes.

MAMMALIA.

	$\begin{array}{r} 3200 \\ 12400 \end{array}$	Ateles at	360235893
		Ateles ater Belzebuth	
Simia Catarrhint.		Cebus Apella	3467
		- capucinus	3454
Simia Troglodytes	3412	Callithrix sciureus	3713
Pithecus Satyrus	3383	Jacchus vulgaris	3624
Hylobates Hoolock	3368	Midas Rosalia	3510
- leucogenys.	3425		
Rafflesii	3539	Lemuride.	
Semnopithecus Maurus	3515		
Cercopithecus Mona	3468	Lemur albifrons	
sabæus	3342		
- fuliginosus .	3530	- Anjuanensis	${ }_{4440}^{4003}$
ruber	${ }^{3395}$		${ }_{3691}^{440}$
pileatus ...	3578	Loris tardigradu	${ }_{3461}^{3691}$
pygerythrus	3401		
Petaurista			
griseo-viridis	3429	Cheiropter	
Ethiops ...	3454	Vespertilio mur	4175
acacus radiatus	${ }_{3429}^{3563}$	noctula	4404
- niger	${ }_{3583}^{3429}$	- Pipistrellus	4324
cynomolgus	3429	Plecotus auritus	4465
Silenus	3430		
nemestrinus	3493	nsect	
sylvanus	3335	Talpa Europæa	4747
mela	3389	Erinaceus Europæus	408
Cynocephalus Anubis	3461	Sorex tetragonurus ..	1
leucophæus ...	3555		
Simie P		Plantigrada.	
bentad	3620	Arctonyx colla	$\begin{aligned} & 3940 \\ & 3609 \end{aligned}$

MAMMALIA-(continued).

Ursus maritimus	3870	Cetacea.	
- Arctos	3723		
Americanus	3693	Delphinus Phoræna	3829
Americanus, var.	3782	Balæna Boops	
ferox	3530	Pachydermata.	
Helarctos Malayanus	3562	Sus Scrofa	4230
Mellivora Capensis	3824	- Babyrous	4316
Procyon lotor	3950	Dicotyles torquatu	4490
Nasua fusca .	3789	Tapirus Indicus	4000
ru	3878	Elephas Indicus	2745
Basaris astuta	4033	Rhinoceros Indicus	3765
Cercoleptes caudivolvulus	4573	Equus Caballus	4706
			13422
Carnivora.		Asinus	4000
Paradoxurus leucomystax	4236	- Burchellii	4360
P-Bondar	5693	- Hemionus	4421
binotatus	4660	Ruminantia.	
Canis Pamilasiiaris	5485		
Canis familiaris	3542		3254
Dingo	3395	Camelus Dromedarius... S.D.	${ }_{15337}^{5921}$
- Vulpes	${ }_{3920}^{4117}$	L...	15337 3123
argentatus	${ }_{3888}$	Bactrianus S S.D.	5123
- cinereo-argenteus	3761	T.	15210
- lagopus	3888	Auchenia Vicugna L L.D.	3555
aureus	3860	Auchenia Vicugna $\{$ S.D.	6444
T.	14000	aco $\{$ L.D.	3361
- mesomel	3645	Paco $\{$ S.D.	6294
- Lupus	3625	Glama	ibid.
Lycaon tricolor	3801	Moschus Javanicus	12325
Hyæna vulgaris	3735	- Stanleyanus	10825
crocuta	3820	Cervus Wapiti	4138
Herpestes griseus	4662	- Hippelaphus	3777
Javanicus?	4790	A	5088
Smithii	4466	Dama	4515
Viverra Civetta	4274	- Alces	3938
- tigrina	5365	Barbarus	4800
Felis Leo	4322	- Elaphus	4324
ncolor	4465	macrourus ?	5074
unicolor	4481	- Mexicanus	5175
Tigris	4206	Marhal	4978
Leopardus	4319	porcinus	5391
jubata	4220	Reevesii	6330
pardalis	4616	- Capreolus	5184
domestica	4404	- Virginianus	5036
Bengalensis	4419	Camelopardalis Giraffa	4571
Caracal	4684	Antilope Cervicapra	5108
cervaria	4220	Dorcas	4922
Serval	4129		16000
Galictis vittata .	4175	Gnu	4800
Mustela Zorilla	4270	- Sing-Sing	5150
Furo	4134	- Philantomba	5116
- vulgaris	4205	- picta	4875
Putorius	4167	- Bubalis	5600
Lutra vulgaris	3502	Capra Caucasica	7045
Phoca vitulina	3281	Hircus	6366

MAMMALIA-(continued).

Capra Hircus, var.	6430	Synetheris prehensilis	3444
Ovis Musmon	5045	Capromys Fournieri ..	3483
Aries	5300	Myopotamus Coypus	3355
- Tragelaphus	6355		10667
Bos Taurus	4267	Castor Fiber	3325
- Taurus, var.	4571	Cavia Cobaya	3538
Bison	4062	Dasyprocta aurata	3857
Bubalus	4586	- Acouchi	3777
T..	14000	Cologenys subniger	3481
Caffre	4703	Hydrochærus Capyba	3190
frontalis	4299	Lepus cuniculus	3607
- Sylhetanus	4222	Lepus timidus ..	3560
Rodentia.		Edentata.	
Pteromys nitidus	3777	Bradypus didactylus	2865
- volucella	3892	Dasypus sex-cinctus	3457
Sciurus vulgaris	4000	- villosus	3315
niger? maximus	3633		
cinereus	4000	M	
- capistratus	3930	Didelphis Virginiana	3557
Palmarum	3847		12000
- Listeri	3948	Dasyurus viverrinus	4056
Arctomys? pruinosus	3484	- Maugei	4034
- Empetra	3503	- ursinus	3534
Dipus Ægyptius	4172		10910
Mus giganteus .	3892	Perameles Lagotis	3902
- decumanus	3911	Hypsiprymnus setosus	4000
Rattus	3754	Macropus Bennettii .	3535
musculus	3814	- ocydromus	3442
- sylvaticus	3839	- Derbyanus?	3405
- messorius	4268		10910
- Alexandrinus	3900	Halmaturus Billardieri	3623
Arvicola amphibia	3790	Phalangista vulpina	3617
- riparia	4199	- nana	3856
Ondatra Zibethica	3550	- fuliginosa	3688
Hystrix cristata	3369	Petaurista sciureus	3661
Erithizon dorsatum	3380	Phascolomys Wombat	3456

AVES.

	L.D.	S.D.		L.D.	S. D.
Gypaëtus barbatus	1913	3425	Buteo vulgaris	1852	369]
Cathartes Iota	1880	3691	- Lagopus	1852	3691
Sarcorhamphus Gryphus	1761	3892	Aquila chrysaëtos	1812	3832
- Papa	1825	3600	- Bonelli	1866	3598
Vultur auricularis	1835	3461	- fucosa	1852	3485
Nucle	4000	10666	- choka	1830	3691
lvus	1829	3399	Helotarsus typicus	1891	3461
T. 9600			Haliaëtus albicilla	1829	3390
- leuconotus	1794	3337	- leucocephalus	1909	3390
leuconotus	1806	3425	- Aguia	1806	3585
Polyborus vulgaris	1684	3166	Falco Peregrinus	1916	3862
Polyborus vulgaris	1829	3572	- Tinnunculus	1891	3490

AVES-(continued).

AVES-(continued).

AVES-(continued).

Tetrao urogallus	L.D.	S.	Ciconia Argala .	L.D.	S.D.
		383			
Tetra urog	2376	3728		1859	3460
1 Caucas	1923	3456	Ibis rube	1948	3153
	4570	9166	Numenius Phæop	1846	4465
Tinamus rufescens.	1752	3338	Limosa melanura	1973	3764
			Scolopax Gallin	2170	3622
			Rallus Philippi	2997	3589
	1884	3364	Gallinula chloropus	2055	3839
			Pinnatipedes. Podiceps minor		
Struthio Camelus........	1649	3000		2001	0
$\text { T. } 9$					
	16		Chenalopex Ægyptiaca.		39
Rhea Americana .	1898	3273	$\left.\begin{array}{c}\text { Cereopsis Novæ-Hol- } \\ \text { landiæ }\end{array}\right\}$ Bernicla Sandvicensis	1722	3692
Grallatores					3839
Cdicnemus crepit		33	Cygnus atratus	ibid.	ibid.
Vanellus cristatus				1806	3692
	$\begin{aligned} & 1895 \\ & 3200 \end{aligned}$	4000	Dendrocygna viduata ...	1789	3555
Nucle				1916	3764
Psophia crepitans	1883	$\begin{aligned} & 3488 \\ & 3740 \end{aligned}$	arborea	1931	3724
Anthropoides Virgo......			Tadorna vulpanser Mareca Penelope	1925	4079 3839
T. 11230	1884	3740		1873	4385
- Stanleyanus		3529	Querquedula crecca......	2062	4592
Balearica pavonina $\ldots \ldots$T. 9597Nuclei ...			- acuta	1993	3839
		9750	circia	2088	3839
	4000		Anas galericulata	1937	3424
Ardea cinerea	1913	3491	Larus ridibundus	2097	4000
- Nycticorax	1780	3555		1973	3839
minuta	1859	3600	Nuclei ... Pelecanus Onocrotalus...	1777	3369
latalea leucoro			Pelecanus Onocrotalus...Nuclei ...	3200	600
Ciconia alba	1755	3439		2005	65
nigra	1806	3403			

REPTILIA.

Chelonia Mydas	L.D.	S.D.	Lacerta viridis	L.D.	S.D.
	1231	1882		1555	2743
Nuclei...	4000	6000	Anguis fragilis	1178	2666
Testudo Græca	1252	2216	Natrix torquata	1371	2157
- radiata	1241	2197			
Alligator - ?	1324	2122		3835	6817
Crocodilus acutus	1231	2286	Coluber Berus	1274	1800
T. 8000				3227	4986
- Lucius?	1124	2215	Python Tigris	1440	2400
Champsa fissipes	1259	2315		3555	7468
Iguana Cyclura	1230	2285			
Nuclei .	5333	6400			

AMPHIBIA.

PISCES.

MISCELLANEOUS.

MILDNESS OF THE SEASON.

Two instances of the mildness of the season have occurred. A pair of the Vanessa Io were brought to me, caught flying at Bardsey, near Leeds, on the 24th January. A robin's nest, with young ones, was found near Swillington, about six miles from Leeds, on the 2nd February.

Henry Denny.

DE HIRUNDINUM AD NOS REDITU.

Salve, quæ ad nos incolumis te vertis, hirundo,
Quandoquidem veris nuncia grata redis;
Et nos ceu socios post frigora sæva revisis, Et tecum nobis tempora læta refers.
Te redeunte redit facies lætissima mundo. Sævus abit Boreas; mitior aura redit.
Solvunturque nives, et grato murmure rivi Labuntur ripis, prataque amœena rigant.
Herba solum vestit, pinguntur floribus arva, Omnis abit squallor, pulchra juventa redit.
Te redeunte, virent nuper quæcunque rigebant, Arboribus redeunt te redeunte comæ.
Salve, igitur, felix cunctis mortalibus ales, Nuncia veris avis, nuncia lætitiæ.

Lucas Nicolaus del Muto.
Ann. \& Mag. N. Hist. Vol. xvii.

AGRIMONIA ODORATA, AITON.

In the course of an examination of my native species of Rosacec, I have had the fortune to detect a good specimen, in fruit, of the Agrimonia odorata of the Hortus Kewensis, given to me by the Rev. W. W. Newbould, who gathered it at Beaumont in the island of Jersey on the 15th of August 1842. I believe this to be the only continental plant, not known as a native of Britain, which has been added to the flora of the Channel Islands since the publication of the 'Primitiæ Floræ Sarnicæ.' It is distinguished from A. Eupatoria, which it greatly resembles, by its " greater size,-three to four feet high ;" leaves more deeply and more sharply cut, hairy and furnished with scattered glands beneath, not cano-tomentose; tube of the calyx of the fruit larger but shorter, bell-shaped or nearly hemispherical, not turbinate, uniformly hairy and glandular, only furrowed in its upper half, and even there the furrows are shallow; spines longer, and the lower ones strongly reflexed ; petals "saturate aureis," red in the dried specimen. It will probably be detected in some of our southern counties if diligently looked for.-C. C. B.

HASSALL'S " BRITISII FRESHWATER ALGA."

The Editors think it right to make a few observations upon Mr. Hassall's letter printed in the last number of these 'Annals,' and to which these remarks would have been appended, had they not thought that they might as well allow their readers one month's opportunity of contrasting the letter and the review, believing that the latter is by far the best answer to most points brought forward in the former. They wish it to be distinctly understood that they are not again reviewing the work, and do not intend to be drawn into a paper war, which would be totally out of place here.

Mr. Hassall complains that the review contains animadversions which a careful and candid examination of the work will not justify ; they have now to state that a re-examination has only convinced them that the reviewer has been very lenient, and that Mr. Hassall should have been well-satisfied when he reflects how plentifully he has appropriated to himself the labours of others.

Suppose that Mr. Hassall had been engaged for the last two or three years in bringing out periodically original and elaborate figures with descriptions, as Mr. Ralfs has done, and that some compiler, watching close at his heels, had instantly and without ceremony copied a very large number of his figures, and given them to the world as his own, would Mr. Hassall have beenn content to acquiesce without complaint or remonstrance? To say nothing of the illegality of such a proceeding (which however is clear enough), there is too much reason to complain of its injustice and disingenuousness.

It is to little purpose that Mr. Hassall states that " no one plate is a copy of any one of Mr. Ralfs's," when the figures of which they are composed are palpably so, although by transpositions and inversions the identity of the plates is disguised.

Our readers may judge for themselves by comparing the plates of Desmidece in both works: they will see that there is not a single
figure in Mr. Hassall's Plates lxxxv. or lxxxvi. that is not taken frum the Annals.

Mr. Hassall alleges that he has made a sufficient acknowledgement in having stated in his work that " several of the figures of this family, especially certain of the genera Euastrum and Cosmarium, are taken from those of Jenner and Ralfs." Now, with regard to Cosmarium, all the figures, thirty-four in number, are copied from the 'Annals,' while in Goniocystis, including Arthrodesmus, there are fifty-one figures, all copies, without a single original.

Neither space nor inclination allows the detail of further instances, but an examination of the work has confirmed the editors in the conviction that Mr. Hassall has by no means made a full and fair avowal of the extent of his obligations to others.

The opinion expressed in the review upon comparative specific characters is confidently left to the judgement of naturalists.

Mr. Hassall's statement that "it would have been easy for him, had he thought proper to do so, to have abstained from quoting Mr. Ralfs altogether," when he had helped himself so freely to his figures, needs no comment.

It may be right to state that Mr. Jenner's labours were not coupled with those of Mr. Ralfs in the review, owing to his not having published upon these tribes. Mr. Jenner's researches are well-known to and most highly appreciated by the reviewer. Mr. Jenner would be the last to take credit to himself for the labours of another, as may be seen in his 'Flora of Tunbridge,' pp. 178, 188, 192, 200.

HASSALL'S " BRITISH FRESHWATER ALGE."

To the Editors of the Annals of Natural History.

Gentlemen,-In Mr. Hassall's letter in your February number, in answer to your reviewer of his 'British Freshwater Algæ,' my name is used, in the allusions to Mr. Ralfs's papers on the Desmidiee, in such a manner as I am afraid might mislead the public; I am induced, therefore, to beg the insertion of a few lines in your next number.
Those papers were written solely by Mr. Ralfs, and I must disclaim any praise at his expense ; since my having assisted him in his observations, or given the outlines of some of the figures, could not make me the author.

No one has been more ready, nor more careful to give another credit for what was due to him than Mr. Ralfs has been; but what little I have done has been for my own amusement, and from love of natural history. It has afforded me the greatest pleasure, as well as instruction, to have a person so faithful in investigation, so acute and accurate in observation, and so perspicuous, simple and concise in definition to correspond with, and 1 am pleased with the opportunity now afforded me to state that at first, most of my knowledge of this interesting, curious and very beautiful tribe of plants was obtained through his kindness, and also that it is my intention to render Mr. Ralfs every assistance in my power in bringing out his
'Monograph of the British Desmidiea,' either in microscopical observation, by faithful outlines, or in the determination of any difficult point.

Mr. Hassall also is a gentleman whom I respect, and for most of my knowledge of the British Conjugate I am indebted to his kindness. I am, Gentlemen, your obedient servant,

Edward Jenner.
On the Disease of the Plantain. By George R. Bonyun, M.D. Communicated by W. H. Campbell, Esq., LL.D., Secretary of the Royal Agricultural and Commêrcial Society of British Guiana.
The varieties of the edible plantain, which are known and cultivated throughout the West Indies, Africa and the East, are all of them reducible to two species, viz. the plantain and the banana (Musa paradisiaca and Musa sapientum). The difference between these two plants is even so slight as to be scarcely specific ; it is therefore most probable that there was originally but one stock, from which they have by cultivation and change of locality been derived. It is therefore necessary to determine with exactness, if possible, whether the plantain or banana (whichever be the parent stock) exists anywhere at present, or has been known to have existed as a perfect plant, that is, bearing fertile seeds, or whether it has always been in the imperfect state, that is, incapable of being procreated by seed, the only state in which it exists in this colony.

In the oldest botanical descriptions of the plantain, bakova, pisang, banana, bihai, or by whatever name it is known, it is invariably described as an anomalous plant not perfecting its seeds; nor is there any traveller who has described a plant which could be considered to be the plantain in its uncultivated state.

In Gerard's 'Herbal,' printed in 1636, p. 1464, there is an excellent drawing of a bunch of plantains, and it is described as seedless. Plumier, in his ' Nova Plantarum Americanarum Genera,' printed in 1703, gives a like description of the plantain. Linnæus, in his 'Species Plantarum,' anno 1763, describes four species, Musa paradisiaca, sapientum, Bihai and Troglodytarum, which latter, on the authority of Rumphius, he says, bears many seeds (hac gerit semina multa). He supposes the two former to be hybrids produced by impregnating the Bihai with some congeners unknown to him. Since Linnæus's time the "Bihai" has been found to belong to a different genus than Musa; it is now called Heliconia humilis, is a native of South America, and produces fertile seeds. Whether Linnæus be right in his conjecture that the Bihai is the stock-plant of the plantain, it is almost impossible to ascertain; but the absence of any description of a wild seed-bearing plantain renders it highly probable that the cultivated species are hybrids produced long ago. The banana, from time immemorial, has been the food of the philosophers and sages of the East; and almost all travellers throughout the tropics have described these plants exactly as they are known to us, either as a sweet fruit eaten raw, or a farinaceous vegetable roasted or boiled.

It is remarkable that the plantain and banana should be indigenous, or at all events have been cultivated for ages both in the old and new world. Numerous South American travellers describe some one of these plants as being indigenous articles of food among the natives, thus showing (if the plantain and its variety be hybrids) a communication between the tropics of America, Asia and Africa long before the time of Columbus. The older writers on this colony consider the plantain to be a native. Thus Hartsinck in his 'History of Guiana,' vol. i. p. 71, describes under the head of "description of wild trees" the fruit of the plantain or wild banana tree as being eaten by the Indians roasted or ripe, \&c., while the banana is under the description of cultivated trees. Belin, 'Description Géographique de la Guyane,' p. 49, in like manner describes the plantaine, or plantin, as being a food used by the Indians, \&c. It is remarkable that Sir Robert Schomburgk likewise found a large species of edible plantain far in the interior. It appears to me to be quite clear therefore that the plantain is either a hybrid, or its power of procreation by seed has been destroyed long ago by cultivation, and that it is not known to exist anywhere in a perfect state; in either of which cases, any attempt to improve our present stock by the introduction of suckers from elsewhere must be totally futile. I need scarcely remark, that should the suppositions with regard to the hybridity of the plantain be incorrect, and that in certain localities to us at present unknown the plant matures its seed, the seedlings would require long cultivation by repeated transplantation of suckers to deprive the fruit of its seed, or in other words, to render it edible.

If the proposed introduction of plantain suckers from Matanzas, Porto Rico, or other countries, be with the view of entirely substituting them for our present stock, and thus getting rid of the disease, a very serious matter for consideration is presented to us, viz. Is the disease hereditary or owing to imperfection in the plant itself, or is it caused by unfit soil or imperfect tillage ? If it be hereditary, then the only means left is totally to eradicate the present stock and to introduce a new one. If, on the other hand, the disease be one of locality, then the introduction of new plants would be merely exposing them to the same cause of destruction. The cause of the disease has been considered by some to be a species of beetle, which destroys the root or finds its way into the body of the tree. This however is a conjecture totally unsupported by any facts, the minutest investigation not disclosing the existence of any such animals in the diseased plantain tree, or at least in that relation to the tree which would in any way justify the supposition that they were the cause of the disease. Another supposition has been that the disease is similar to the smut in wheat, but is equally as unfounded as the beetle theory, no fungi being discovered in the diseased parts, even by the aid of a very powerful achromatic microscope.

Dr. Aanzorg's theory is, that there is a deficiency of certain chemical substances in the soil, and his experiments appear to render his supposition very probable. On the other hand, several planters declare that the youngest suckers from a diseased stock grow up for
the most part diseased, wherever planted. These conflicting opinions must be cleared up by experiment. In the meantime, I believe that I can point out the "seat of the disease," which is at all events the first step towards the discovery of its cure. If a plantain tree be stripped of its leaves from the root upwards, it will be found to consist of a number of joints-the bunch of plantains being a continuation of the upper joint, and the spire being the upper leaf rolled up -exactly similar to a cane and its arrow-the bunch being the organic apex of the plantain tree, in the same manner as the cane arrow is the organic apex of the cane plant.

Of the various vessels and tissues which are necessary to vegetable life, the plantain tribe abounds in what are called spiral vessels or trachex ; and if a healthy plantain tree be examined from the root upwards as far as the fruit, these vessels will be found in continuous lines; and even in the farina of the plantain they are detected in an extreme state of tenuity. On further examination, these spirals (as * has been known to botanists for some time) are found to be composed of numerous fasciculi, and are contained in tubes from whence they can be drawn forth, having a translucid appearance, and being perfectly free from any adherent matter. From the large number of these vessels in the plantain tribe, it is evident that their functions must be important, and that any impediment to their healthy action must be attended with an imperfect development in some part of the plant. Now if a plantain tree bearing a bunch of plantains in a more or less diseased state be examined carefully, a certain number of these tubes containing spirals from the roots up, through the culm or body of the tree into the bunch, will be found to be filled with a ferruginous-looking fluid of a more or less dark colour, and if the spiral vessels be drawn forth from their tubes, this matter will be seen to collect upon them in minute drops; the spirals will also be of the same colour as the substance contained in the tubes. A bunch of plantains in the extreme state of disease, containing no farina, but merely the dissepiments of the cells, will have a large number of the spiral tubes, particularly in the circumference of the culm, filled with a dark ochreous-coloured fluid, while the number of diseased tubes will be fewer, and the colour of the fluid contained more of a yellowish colour, in less diseased plants.

In the stock of a small poor bunch of plantains, but still containing farina and edible, only a trace here and there of the abnormal matter was found. This peculiar state is not confined to the fullgrown plant, but the youngest suckers show the disease in a greater or less degree. All the other tissues and vessels of diseased trees I have found after the most careful investigation to be quite sound. The decay of the leaves, and subsequent rottenness and destruction of the plant, is owing to its diminishing vitality, and has nothing to do with the specific disease. Any mechanical injury sufficiently violent to diminish the vigour of the plant, would be followed by similar decay and rottenness. I am therefore fully convinced, that, whatever may be the cause of the disease, the seat of it is in the tubes containing the spiral vessels, which are invaded by an abnormal
fluid, which is inimical to the formation of the pulp in the fruit, or impedes the spirals in the due performance of their functions. The ehemical composition of this fluid, and whether it be absorbed directly from the soil, or eliminated within the plant in consequence of functional disease of its organs, will form the subject of future investigation; and I would venture to augur, the colony having now the assistance of a gentleman of high scientific acquirements, that not only the cause, but the cure of this very destructive disease will be shortly discovered.

METEOROLOGICAL OBSERVATIONS FOR JAN. 1846.

Chiswick.-January 1. Fine. 2, 3. Frosty : fine : overcast. 4. Rain. 5. Sharp frost : cloudy : clear and frosty. 6. Drizzly. 7. Overcast and mild throughout the day and night. 8. Cloudy and fine. 9. Uniformly overcast. 10. Overcast : drizzly rain. 11. Hazy and drizzly. 12. Cold haze. 13. Hazy : very fine. 14. Foggy : overcast and fine. 15. Fine. 16. Thick fog: rain at night. 17. Hazy : drizzly : cloudy and mild. 18. Foggy : rain at night. 19. Constant rain : boisterous, with rain at night. 20. Clear and fine. 21. Rain : densely clouded and mild: boisterous, with rain at night. 22. Boisterous, with rain : densely clouded. 23. Heavy showers. 24. Hazy and mild. 25. Rain. 26. Showery : heavy rain at night. 27. Clear : cloudy : rain at night. 28. Rain : cloudy : very high tide in the Thames : clear. 29. Rain. 30. Overcast. 3 i. Cloudy : windy at night.

Mean temperature of the month $43^{\circ} \cdot 54$
Mean temperature of January 1845 38 •69
Average mean temperature of Jan. for the last twenty years $36{ }^{\circ} 46$
Average amount of rain for the last twenty years $1 \cdot 60$ inch.
Boston.-Jan. 1. Stormy : rain last night. 2. Fine. 3. Cloudy, 4. Rain. 5. Fine. 6. Rain. 7. Clondy. 3. Fine. 9-13. Cloudy. 14, 15. Fine. 16. Fogey. 17. Cloudy : rain А.м. and р.м. 18. Foggy. 19. Rain : rain early А.м. : rain p.m. 20. Windy : rain early A.m. 21. Cloudy: rain p.m. 22. Cloudy and stormy : rain early a.m. 23. Fine. 24. Cloudy : rain early a.m. 25. Fine: rain early A.m. 26. Cloudy : rain early A.m. 27. Fine. 28, 29. Rain. 30, 31. Cloudy.-N.B. Not so warm a January since January 1834: the average of that month was $44^{\circ} \cdot 3$.

Sandwick Manse, Orkney.-Jan. 1. Snow-showers. 2. Fine: frost: cloudy. 3. Cloudy : clear. 4, Clear : showers. 5. Bright: showers. 6. Damp: clear. 7. Cloudy : showers. 8. Showers : clear. 9. Cloudy : clear. 10. Rain : cloudy. 11. Drizzle : damp. 12. Drizzle: hazy. 13. Bright: cloudy. 14. Damp : cloudy. 15. Rain: drizzle. 16. Clear. 17. Damp. 18. Bright: cloudy. 19. Damp : showers. 20. Rain: drizzle. 21. Rain : clear. 22. Damp: rain. 23. Fine: damp. 24. Fine: frost: damp: aurora. 25. Rain: cloudy. 26. Damp. 27. Damp : rain : clear. 28. Cloudy : showers. 29. Showers. 30. Cloudy : rain. 31. Drizzle : showers.

Applegarth Manse, Dumfries-shire.-Jan. 1. Snow-showers. 2. Frost: clear and fine. 3. Wet all day. 4. Fine a.m. : shower p.m. 5. Frost A.м. : rain p.m. 6, 7. Showery. 8. Fair. 9, 10. Slight drizzle. 11. Slight drizzle: fog. 12. Fair and mild. 13. Fair A.m. : rain p.m. 14. Fair : one slight shower. 15. Wet a.m.: cleared : fine. 16. Frost, slight : fine. 17. Fair a.m. : slight shower p.m. 18. Fair, but cloudy. 19. Rain nearly all day. 20. Rain all day : flood. 21. Fair, but cloudy. 22. Drizzling rain. 23. Rain and fog. 24. Thick fog. 25. Heavy rain : flood. 26. Drizzling rain. 27. Rain A.M. : fair: rain p.M. 28-31. Rain.

```Mean temperature of the month\(43^{\circ} .0\)
```

Mean temperature of January 1845 $36 \cdot 1$
Mean temperature of Jan. for twenty-three years. $34 \cdot 3$
Mean rain in January for eighteen years 2 $\cdot 57$ inches.

.	－भु：м 		¢¢¢ ¢ ¢0 ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢	＋
	$\begin{gathered} \text {-axiys } \\ \text {-so!yund } \end{gathered}$			）
	${ }^{-103 s o g}$			¢
	＊$ํ$ ¢！Ms！			¢
تٍ	－Yotmpues ＇Käyio			
	${ }^{\text {－u0，sog }}$			
	$\cdot \mathrm{u} \cdot \mathrm{d} \mathrm{I}$ －جग！м8！			
		-ux's		
				＋
		－${ }^{\text {a }}$ N		
		$\cdot \mathrm{xe}$	M M N M M	＋
	－${ }^{2} \cdot{ }^{\circ} \mathrm{F} 8$ 			\％
	$\stackrel{3}{0}$	$\cdot \mathrm{U}$		프N
	运	$\cdot{ }^{-1 / 5}$		－
		＋	 	\％
		－	Mー 	＋
			 	\％
		๑દૂ̇	 	－1
	－w＇e ${ }^{\circ} 8$ －uolsog		स M N N NMMM N N N N N N N N N N N N N N N N N N N	\％
		号		¢ ¢ ¢ 1
		㥑	 	त
－Yみuow fo sired		¢	ค	旡

THE ANNALS

MAGAZINE OF NATURAL HISTORY.

No. 112. APRIL 1846.
XXX.-Observations on the Tribe Sphæriaceæ, and descriptions of certain new Genera. By Prof. Giuseppe de Notaris. Florence*, 1844. 4to.
By means of the immortal works of Bulliard, Persoon, Fries, Kunze, Nees, Greville and others, mycology has made of late years surprising progress, although it still continues in some of its parts very inferior to the other branches of cryptogamic botany. This arises, if I mistake not, from an opinion unfortunately adopted by certain writers of authority, who have not hesitated to assert, that microscopic observations instead of conducing to happy results are prejudicial to the study of mycology, and are the perpetual fountain of error and confusion. This opinion I not only hold to be false, but even incompatible with the present exigences of the human mind, which cannot content itself with the superficial exterior of things, but delights in searching into their most secret recesses.

And what, in truth, was the study of Cryptogamia before the compound microscope, thanks to the pains taken by the enlightened Amici, was brought to its present degree of perfection? The microscope has unveiled to us, not to speak of the surprising discoveries in bryology, lichenology and algology, the various ways in which fungi are reproduced, which, whether from the singularity of their forms, their hidden mode of growth, or the excessive minuteness of their parts, were the subject of very insufficient observations. How mycology has advanced since the late improvement in microscopic observations, the works of Vittadini, Corda, Montagne and Berkeley bear incontestable evidence.

No one is ignorant that Persoon and Fries made the study accessible by defining the limits of the families, properly describing the species, and laying the foundation of the natural system;

[^0]but from having too often preferred characters more ready of access to those of internal structure, and trivial differences to the organs of fructification, they led students astray from the analytic method formerly adopted by the immortal Micheli, who, assisted by the power of their own minds, would otherwise have guided them by a surer and more noble path. The works of Micheli were often consulted, but his observations were either carelessly passed over or considered incomprehensible, and we have seen several of our contemporaries advance facts as new which had already been published in the 'Nova Plantarum Genera.'

Of all the divisions of the mycological kingdom, that of the Pyrenomycetes or Hypoxyla especially appears to me most strikingly to prove what I have above asserted. Analyse the works of Persoon, Fries, Duby, Wallroth and Chevalier, and you will find the form and colours of the perithecia, the way in which they open, the mode in which they burst from the matrix, the stroma, the colour, the consistence of the nucleus, accurately described; but of the parts of which the nucleus itself is composed, of the parts in which the essential and classical characters really reside, of the fructification, of the internal structure of the conceptacula, there is no intimation whatever, or they give them joined to the others as of secondary importance and out of mere compliment.

Thus it is that in this family myriads of errors and contradictions are met with at every step. We find, for example, some species of Spharia placed among the Cytispora, because the nucleus bursts from the perithecium in the form of a tendril; to Lophium we find pulverulent sporidia assigned, because they are thread-shaped and equal in length to the asci. Among the Spharia we find species which have the nucleus composed of sporidia only-species which belong to Spharonema, and in short true Peziza, because in colour, form, and mode of growth they present the semblance of a perithecium.

Among the general characters of Fries' sections of the immense genus Spharia, based principally and sometimes with useless details on the existence or want of a stroma, or on the mode in which the perithecia are disposed, we certainly find the asci and sporidia mentioned, but the sporidia in the same sections differ immensely in the several species in form, structure or size. We find allied species dispersed in different sections or even identical species, solely from their having attacked vegetables of different families or parts of different duration.

I do not hesitate to assert this, having had the advantage of procuring an authentic copy of the entire collection of the Scleromycetes Suecici of Fries, possessing also the greater part of the types published in the ' Fasciculi' of the enlightened Prof. Kunze, those illustrated by Montagne in his 'Notice sur les Plantes

Cryptogames récemment découvertes en France,' and in the third edition of the 'Flore des environs de Paris' of Merat, and the collections of Demazières and others, with the help of which I have been able to make a multitude of comparisons and clear away no slight number of errors;-errors which, without further preface, appear to me incontestably to demonstrate -

1st. That the progress in cryptogamic botany is chiefly owing to microscopical observations.

2ndly. That the classification of the Pyrenomycetes especially can never be natural nor philosophical, until we know the most minute particulars of the fructification of the species.

Besides which, if in the classification of many other tribes of fungi, and in defining the genera and species of the Perisporiacei, Myxogastres, Mucorini, Coniomycetes, \&c., part of the characters are furnished by the peridia and sporidia, why should such characters be altogether rejected in the Pyrenomycetes, in which these organs are more complicated, and consequently rank higher in the series of organized structure?

The suspicion that differences in the fructifying parts of the genus Spheria might be found, had arisen in my mind from the first moment in which I prepared myself to examine analytically a few minute fungi, which I afterwards described and figured in my decades of Micromycetes. During last winter, however, having previously excluded those species in which I had not succeeded in finding a nucleus ascigerus, I prepared with the utmost diligence of which I was capable, the analysis, descriptions and figures of 200 other Spharia; and I assert that in identical species, from whatever different region they came, and these often growing on plants of different families, I have always found the structure, size, colour and shape of the sporidia identical; while, on the contrary, species properly distinct have never presented to me sporidia of the same shape. How many times have I admired in ecstasy the inexhaustible fullness of the great Creator of all things, who has given to an organ essentially the same in its nature and office such an infinite variety of form, so that each species carries with it an invariable impress or token to distinguish it from its allies!

Still very far from the end I had proposed to myself, from want of time, and not being able to embrace a larger field, I confine myself at present to a notice respecting the tribe of indigenous Pyrenomycetes Sphariacea, because on recurring to the examination of the most essential parts of the fruit, they exhibit on a small scale the basis on which I intend to proceed in their rearrangement; re-arrangement I say, because Greville, Corda, Montagne, and Fries himself in the 'Plantæ Homonemeæ' felt the urgent necessity of lending a hand in the dismemberment of
the genus Spharia, proposing the genera Diplodia, Ostropa, Cucurbitaria, Cryptospharia, Valsa and Hypocrea, which conveniently limited according to the characters of fructification common to the greater number of the respective species, and selected from the heterogeneous materials which they everywhere contain, ought without doubt in some measure to be adopted, although for the most part founded on the appearance of the stroma, perithecia and nucleus, characters comparatively of small value.

I comprehend among the Pyrenomycetes Sphariacea, those species only in which we meet with truly ascigerous conceptacula or perithecia, whether spheroidal, lentiform, conical, oval; whether obtuse or acute, or finally produced into a kind of cylindrical neck, angular or compressed, isolated or gregarious, or collected together in a stroma of varied form; opening by means of a vertical pore, sometimes scarcely visible or gaping in consequence of the thinness of the exterior coat, which yields readily to the shock of the sporidia bursting forth from the asci when arrived at maturity, or of the asci themselves separated from the walls of the perithecia, or in short by means of an irregular fissure.

The limits indeed within which the celebrated Corda has circumscribed the tribe or family of the Sphariacea, in his immense iconographical work on the family of Fungi (Icones Fungorum, vol. v. p. 31), might be adopted for the present, had he not as I believe comprised in it genera which do not properly belong to it, and for the most part defined too loosely.

In the Sphariacea we have to consider the stroma, the perithecium, its texture, the mode in which it opens, the nucleus, the asci, the paraphyses and the sporidia.

The stroma, on which the fundamental divisions of Fries are based, furnishes characters of some importance in the greater part of compound Spharia, which, besides serving as a receptacle for the perithecia, presents a determined form characteristic of each species. The stroma cannot properly be compared to the thallus of Lichens, because it is an integral part of the fructifying apparatus. From the mycelium, the true equivalent of the thallus, one can scarcely draw materials for the diagnosis of the genera, because it is always extremely difficult to follow up its development. Deeply invested in the substance of the matrix or confluent with it, and often evanescent in fructifying individuals, it cannot afford precise characters except by the help of observations, often perhaps impracticable, and attentively following up the development before the evolution of the perithecia. In the simple, free, superficial or innate species, and in the Caspititic, the nature of the stroma appears less clear, because in some species

[^0]: * Translated from the Italian. Communicated by the Rev. M. J. Berkeley. This memoir, which was first published as a separate pamphlet in 4to, has since appeared in 'Giornale Bot. Italiano,' edited by Parlatore.

 Ann. \& May. N. Hist. Vol. xvii.

